

PII: S0960-894X(96)00314-9

SYNTHESIS AND PROPERTIES OF 2'-5' and 3'-5' LINKED α-OLIGORIBOADENYLATES

Hiroaki Sawai*, Takeshi Ito, Kazumi Kokaji, Masami Shimazu, Kazuo Shinozuka and Hideharu Taira[†]

Department of Applied Chemistry, Gunma University, Kiryu, Gunma 376, Japan and Department of Applied Biology, Faculty of Agriculture, Iwate University, Ueda, Morioka 020 Japan[†]

Abstract: Uranyl ion-catalyzed oligomerization of α -adenosine 5'-phosphorimidazolide in neutral aqueous solution yielded 2'-5' and 3'-5' linked α -oligoriboadenylates. Spectroscopic properties of α -oligoriboadenylates were studied by NMR and CD. α -Oligoriboadenylates with 2'-5' linkage showed strong resistance against nucleases, but weak binding ability to RNase L. Copyright © 1996 Published by Elsevier Science Ltd

2'-5' Linked oligoriboadenylates of the general formula, pppA2'(p5'A)n, n>1 referred to as 2-5 A are prepared from ATP by 2-5 A synthetase in interferon-treated cells and are directly related to the interferon's antiviral action. $^{1-4}$ The 2-5 A binds and activates a latent 2-5 A-dependent endoribonuclease called RNase L which degrades viral mRNA resulting in an inhibition of protein synthesis. 3 , A number of 2-5 A analogs have been prepared and their biological activities have been investigated. Some 2-5 A analogs have been reported to possess an anti-HIV activity. $^{5-8}$ Several fundamental regions of 2-5 A involved in the binding to and activation of the RNase L have been uncovered to date. The 5'-terminal polyphosophate or monophosphate, 2'-5' phosphodiester linkage, adenine base at the 5'-terminus (first) and third residues, and a chain length of more than three are necessary for the activity of the 2-5 A. 4 ,9-11 2'-5' Linked α -anomeric oligoriboadenylate contains the above fundamental region except that this 2-5 A analog has α -adenosine instead of β -adenosine. Further, 3'-5' linked α -oligoribonucleotides have been reported to be useful as an antisense agent. 12 We have attempted the synthesis of 2-5 A analogs consisting of α -adenosine and the related 3'-5' linked α -oligoriboadenylates, and evaluated the effect of the difference in stereochemistry at the C-1' position to the binding of RNase L by the oligonucleotide ligand and studied biochemical and physicochemical properties of α -oligoribonucleotides.

Previously we have shown that the uranyl ion efficiently catalyzes the oligomerization of natural β -adenosine 5'-phosphorimidazolide in aqueous solution, yielding a series of 2'-5' linked β -oligoriboadenylates. ^{13,14} We have employed the uranyl ion-catalyzed oligomerization for the synthesis of α -oligoriboadenylates, as this method gives many kinds of oligonucleotides with different chain lengths and different internucleotide bonds in a one-step reaction, and is easy to perform.

 α -Adenosine was prepared by a fusion reaction of 1-acetyl-2,3,5-tri-O-benzoyl-D-ribose with N⁶-benzoyladenine in the presence of catalytic amount of p-toluene sulfonic acid at 180 °C for 15 min according to a modification of the published procedure. ¹²,15 After deprotection of the benzoyl group of

1786 H. SAWAI et al.

the products by treatment with NH₃-MeOH, the mixture was subjected to silica gel flush chromatography using 20% MeOH-CH₂Cl₂ as an eluent to give pure α-adenosine in 14 % yield. α-Adenosine was then phosphorylated with phosphoryl chloride in triethylphosphate giving α-adenosine-5'-monophosphate, ¹⁶ which was purified by column chromatography on active carbon and then on DEAE-Sephadex A-25, in 47% yield. α -Adenosine 5'-phosphorimidazolide was obtained by the condensation reaction of α adenosine 5'-phosphate (α-ImpA) with imidazole using triphenylphosphine and 2,2'-dipyridyl disulfide by a similar method as that of β -adenosine 5'-phosphorimidazolide (β -ImpA) synthesis. ¹³ The α -ImpA was oligomerized by an uranyl ion catalyst in neutral aqueous solution. Thus, oligomerization of α-ImpA (50 mM) was conducted in the presence of uranyl nitrate (2 mM) in 4.6 ml of 0.2 M N-ethylmorpholine buffer (pH 7.0) at 24 ° C for 4 d. The reaction mixture was treated with Chelex-100 to remove the uranyl ion and analyzed by HPLC on an RPC-5 column.¹⁷ The HPLC analysis revealed the formation of α oligoriboadenylates up to hexamer. The oligomers were separated by DEAE-Sephadex A-25 anionexchange column chromatography with a linear gradient elution of triethylammonium hydrogen carbonate buffer and purified by preparative HPLC on ODS-silica gel, when necessary. Both 2'-5' and 3'-5' linked α-oligoriboadenylates were formed in the reaction. A cyclic dimer containing two 3'-5' bonds was also obtained along with the linear 3'-5' dimer. The oligomerization takes place as shown in the following scheme.

The yields of oligomers are listed in Table 1. The ratio of the 3'-5' linkage to the 2'-5' linkage in the resulting α -oligomer increased with the increase of the chain length. Contrary to the oligomerization of

Scheme. Oligomerization of α-ImpA

 β -ImpA, in which 2'-5' linked oligoriboadenylates up to the hexadecamer were formed, no long-chained oligoribonucleotide containing fully 2'-5' linkage was obtained from α -ImpA by the uranyl ion catalyst.

Table 1. α-Oligoriboadenylate obtained from uranyl-ion catalyzed oligomerization of α-ImpA
--

Yield (% based on α-ImpA) ^a	
19	
14	
2	
somers 10	
4	
0.3	
somersb 13	
0.6	
omersb 8	
omersb 3	
S	19 14 2 pomers 10 4 0.3 pomers ^b 13 0.6 mers ^b 8

a. Yield was determined from the UV absorption at 260 nm without making correction for the hypochromicity of each oligoriboadenylate.

Thus, the efficiency and the selectivity of 2'-5' linked α -oligoriboadenylate formation were lower than those of the corresponding 2'-5' linked β -oligoriboadenylate formation. Steric hindrance of the adenine group at the α -position of the ribose likely suppresses the reactivity of the 2'-OH group of α -ImpA, giving a higher ratio of 3'-5' linkage in the resulting α -oligomer.

Structure of the α -oligoriboadenylates was confirmed by NMR and enzyme digestion. Figure 1 shows the NMR of 5'-dephosphorylated 2'-5' linked α -triadenylate (α -A2'p5'A2'p5'A), which was obtained by dephosphorylation of 2'-5' α -(pA)3 with alkaline phosphatase. The assignment of each signal was

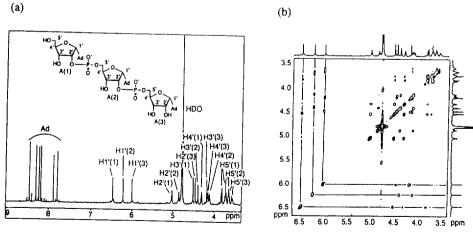
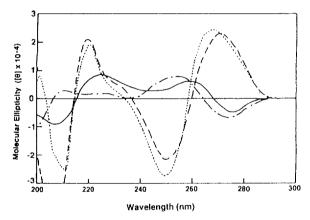


Figure 1. NMR Spectra of α -A2'pA2'pA.


(a) ¹H-NMR spectrum and assignment of signals. (b) HOHAHA spectrum.

b. The isomers contains mainly 3'-5' linkage.

1788 H. SAWAI et al.

done by HOHAHA spectrum. Two signals due to H2'-protons, H2'(1) and H2'(2), show down-field shift that indicates the phopshodiester groups link to the 2'-position of α -adenosine forming the 2'-5' bond. Similarly, down-field shift of the H2'-proton due to the 2'-5' internucleotide linkage was observed in other 2'-5' linked oligoriboadenylates. On the other hand, no down-field shift of the H2'-proton was observed in the corresponding 3'-5' α -oligoriboadenylates.

CD spectra of 2'-5' and 3'-5' linked α -triadenylates are shown in Figure 2 along with the corresponding β -triadenylates. α -Triadenylates showed CD spectra of reverse polarity to those of β -triadenylates in the region of 240-280 nm, reflecting the difference in stereochemistry at 1'-position of ribose. Moreover, the CD band of α -triadenylates is weaker than that of β -triadenylates. The result implies that the α -oligoribonucleotide has weak base-stacking interaction compared with the corresponding β -oligoribonucleotide.

Figure 2. CD spectra of linkage isomers of α- and β-ApApA β-A2'pA2'pA, — — ; β-A3'pA3'pA; ·······; α-A2'pA2'pA, — ; α-A3'pA3'pA — · · ·

Stability of 2'-5' and 3'-5' linked α -ApA against three nucleases was studied along with the corresponding β -ApA, to assess the nuclease resistance of α -oligoribonucleotide. The enzymatic hydrolysis was monitored by HPLC and half-lives of the oligomers are listed in Table 2. Snake venom phosphodiesterase degraded both β - and α -oligomers containing 2'-5' or 3'-5' linkage, but α -oligomers showed substantial resistance compared with the corresponding β -oligomers. Under the conditions where natural β -A3'p5'A was degraded with RNase T2, other dimers, β -A2'p5'A, α -A3'p5'A and α -A2'p5'A, remained intact. Nuclease P1 degraded α -A3'p5'A, although its half-life was longer than that of β -A3'p5'A. On the other hand, α -A2'p5'A or β -A2'p5'A was completely resistant against nuclease P1. The improved resistance of 3'-5' linked α -oligoriboadenylate against some nucleases is consistent with the results observed with 3'-5' linked α -oligoribouridylates α -Oligodeoxynucleotides. α -Oligoribouridylates α -Oligodeoxynucleotides.

Oligoadenylate	Half life against nuclease (h)		
	SVPDE a	Nuclease P1b	RNaseT2 c
β-A2'pA	0.06	not cleavedd	not cleavedd
β-A3'pA	0.06	0.13	0.21
α-A2'pA	0.30	not cleavedd	not cleavedd
α-A3'pA	0.53	2.00	not cleavedd

Table 2. Stability of linkage isomers of α - and β -ApA against nucleases

- a. ApA (8.4 nmol, 0.21-0.25 ODU260) was incubated with snake venom phsphodiesterase (0.2 units) in 30 μl of 0.02 M Tris-HCl (pH 8.0) in the presence of 0.01 M MgCl₂ at 37 °C.
- b. ApA (8.4 nmol) was incubated with nuclease P1 (0.03 μ g) in 50 μ l of
- 0.01 M ammonium acetate buffer (pH 5.3) at 37°C.
- c. ApA (8.4 nmol) was incubated with RNase T2 (0.005 μg) in 50 μl of
- 0.2 M sodium acetate buffer (pH 4.5) in the presence of 2 mM EDTA at 37 °C.
- d. No cleavage with the nuclease was observed after 48 h.

Binding of 2'-5' or 3'-5' linked α -triadenylates [α -(pA)3] with RNase L from rabbit reticulocyte lysate and mouse L-cell extract was evaluated by radiobinding assay using ¹²⁵I -labeled 2-5 A as a probe.²⁰ The concentrations of α -triadenylate which displaces 50 % of the bound ¹²⁵I 2-5 A probe to RNase L are shown in Table 3, as a measure of the binding ability. The α -2-5 A, α -pA2'pA2'pA, was 1000 times less effective in the binding with RNase L from mouse L cell extract compared with the natural β -2-5A, β -pA2'pA2'pA. 3'-5' α -Triadenylate showed essentially no binding ability as natural 3'-5' β -(pA)3.

Table 3. Binding ability of 2-5 A analog to RNase L

Oligoadenylate	IC50 (M) ^a		
,	Rabbit reticulocyte lysate	Mouse L cell extract	
β-pA2'pA2'pA	1 x 10 ⁻⁶	5 x 10 ⁻⁸	
α-pA2'pA2'pA	$>5 \times 10^{-5}$	4 x 10 ⁻⁵	
α -pA3'pA3'pA	$>5 \times 10^{-5}$	$>5 \times 10^{-5}$	

a. Concentration of oligoadenylate which displaces 50 % of ¹²⁵I-labeled 2-5 A probe bound to RNase L from rabbit reticulocyte lysate or mouse L cell extract.

In conclusion, short-chained α -oligoriboadenylates with 2'-5' or 3'-5' linkage were formed by uranyl-ion catalyzed oligomerization of α -ImpA. The α -oligoriboadenylates showed strong nuclease resistance, but weak biological activity as an analog of 2-5 A. The results imply that stereochemistry at the 1'-position of ribose is crucial for the recognition of 2-5 A analogs by RNase L.

REFERENCES

- 1. Kerr I. M.; Brown R. E. Proc. Nat. Acad. Sci. USA 1978, 75, 256.
- 2. Ball L. A.; White C. N. Proc. Nat. Acad. Sci. USA 1978, 75, 1167.
- 3. Lengyel P. Ann. Rev. Biochem. 1982, 51, 251.

- 4. Johnston M. I.; Torrence, P. F. In Interferons: Mechanism of Production and Action Vol.3; Friedman
 - R. M. ed.; Elsevier, Amsterdam, 1984; pp 189-298, and the literatures cited in.
- Montefiori D. C.; Sobol R. W.; Li S. W.; Reichenbach N. L.; Suhaldonik R. J.; Charubala R.; Pfleiderer W.; Modizewski A.; Robinson W. E.; Mitchell W. M. Proc. Nat. Acad. Sci. USA 1989, 86, 7191.
- Muller W. E. G.; Weiler B. E.; Charubala R.; Pfleiderer W.; Laserman I.; Sobol R. W.; Suhaldonik R. J.; Schroder H. C. Biochemistry 1991, 30, 2027.
- Sobol R. W.; Fisher W. L.; Reichenbach, N. L.; Kumar A.; Beard W. A.; Wilson S. H.; Charubala R.; Pfleiderer W.; Suhaldonik R. J. Biochemistry 1993, 32, 12112.
- 8. Sobol R. W.; Henderson E. E.; Kon N.; Shao J.; Hitzeges P.; Mordechai E.; Reichenbach N. L.; Charubala R.; Schirmeister H.; Pfleiderer W.; Suhaldonik R. J. J. Biol. Chem. 1995, 270, 5963.
- 9. Lesiak K.; Imai J.; Floyd-Smith G.; Torrence P. F. J. Biol. Chem. 1983, 258, 1131.
- 10. Torrence P. F.; Imai J.; Lesiak K.; Jamoulle J. C.; Sawai H. J. Med. Chem. 1984, 27, 726.
- 11. Torrence P. F.; Brozda D.; Alster R.; Charubala R.; Pfleiderer W. J. Biol. Chem. 1988, 263, 1131.
- 12. Debart F.; Rayner B.; Degos G.; Imbach J. Nucleic Acid Res. 1992, 20, 1193.
- 13. Sawai H.; Kuroda K.; Hojo H. Bull. Chem. Soc. Jpn 1989, 62, 2018.
- 14. Shimazu M.; Shinozuka K.; Sawai H. Angew. Chem. Int. Ed. 1993, 32, 870.
- 15. Pichat L.; Dubay P.; Lamorre Y. C. R. Acad. Sci. Paris 1964, 2453.
- 16. Yoshikawa M.; Kato T.; Takenish T. Tetrahedron Lett. 1967, 5065.
- 17. Sawai H. J. Chromatogr. 1989, 481, 201.
- 18. Debart F.; Rayner B.; Imbach J. L. Tetrahedron Lett. 1990, 31, 3537.
- 19. Morvan F.; Rayner B.; Imbach J. L.; Thenet S.; Bertrnad J. R.; Paoletti J.; Malvy C.; Paoletti C. *Nucleic Acid Res.* 1987, 15, 3421.
- 20. Sawai H.; Taira H.; Ishibashi K.; Itoh M. J. Biochem. 1987, 101, 339.

(Received in Japan 10 May 1996; accepted 1 July 1996)